Unsynchronized Phasor-Based Protection Method for Single Line-to-Ground Faults in an Ungrounded Offshore Wind Farm with Fully-Rated Converters-Based Wind Turbines
نویسندگان
چکیده
This paper proposes a protection method for single line-to-ground (SLG) faults in an ungrounded offshore wind farm with fully-rated converter-based wind turbines. The proposed method uses the unsynchronized current phasors measured by unit protections installed at the connection point of the fully-rated converter (FRC)-based wind turbines (WTs). Each unit protection collects the unsynchronized current phasors from two adjacent nodes and synchronizes them by aligning the positive-sequence current to the same phase angle. The faulted section is identified by comparing the phase angles of the synchronized zero-sequence currents from adjacent nodes. Simulations of an ungrounded offshore wind farm with relay models were carried out using power system computer-aided design (PSCAD)/ electromagnetic transients including direct current (EMTDC).
منابع مشابه
A New Control Method for Smoothing PMSG-based Offshore Wind Farm Output Power
Nowadays, propagation of wind turbines make challenges to supply safe power to the grid. Because of wind speed changes, supervisors are concerned to wind turbines, be able to produce appropriate electric power during the wind speed changes. As a matter of fact, investors are mostly like to invest on offshore wind farms, because of their more stable and continuous wind speed rather than onshore ...
متن کاملA New Method to Study Aggregation Effect of Harmonic Current Emissions in a Wind Farm Based on Type-III Wind Turbine Average Modeling
Assessment of complex harmonic current contribution of each wind turbines at connection point of a wind farm to the grid (primary emission) is presented in this paper. Moreover, contribution of grid background harmonic voltage distortion on harmonic current distortion (secondary emission) of each turbine is also evaluated. Both assessments are represented based on primary and secondary transfer...
متن کاملGA-Based Optimal LQR Controller to Improve LVRT Capability of DFIG Wind Turbines
Nowadays, the doubly-fed induction generators (DFIGs) based wind turbines (WTs) are the dominant type of WTs connected to grid. Traditionally the back-to-back converters are used to control the DFIGs. In this paper, an Indirect Matrix Converter (IMC) is proposed to control the generator. Compared with back-to-back converters, IMCs have numerous advantages such as: higher level of robustness, re...
متن کاملRobust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملFault Behavior of Wind Turbines
Synchronous generators have always been the dominant generation type in the grid. This fact affected both planning and operation of power systems. With the fast increase of wind power share in the grid in the last decade, the situation is changing. In some countries wind power represents already a consistent amount of the total generation. Wind turbines can be classified as non-synchronous gene...
متن کامل